A self-powered porous ZnS/PVDF-HFP mechanoluminescent composite film that converts human movement into eye-readable light.
نویسندگان
چکیده
This study reports on a self-powered mechanoluminescent flexible film that converts human movement into green, yellow, and white light that are visible to the naked eye. The film is simply a highly porous composite material that was prepared using a piezoelectric polymer and ZnS luminescent powders. The highly effective mechanoluminescence capabilities stem from both the film's porous structure and the strong interactions between poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and ZnS particles. The porous film's sensitivity helps the conversion of mechanical disturbances into electrical energies and induces the electroluminescence of ZnS particles. The particle-film interactions induced a high β-phase, which is the most effective piezoelectric phase, in the PVDF-HFP film. Similar to polymeric materials, the composite film is highly processable and can be written into arbitrary shapes or patterns using a pipette or stamping techniques. Finger rubbing or ultrasonication makes the mechanoluminescence patterns readable. This composite mechanoluminescent film provides high potential for future applications in electronic skins, smart electronics, and information encryption techniques.
منابع مشابه
Cross-Selectivity Enhancement of Poly(vinylidene fluoride-hexafluoropropylene)-Based Sensor Arrays for Detecting Acetone and Ethanol
Two methods for cross-selectivity enhancement of porous poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP)/carbon black (CB) composite-based resistive sensors are provided. The sensors are tested with acetone and ethanol in the presence of humid air. Cross-selectivity is enhanced using two different methods to modify the basic response of the PVDF-HFP/CB sensing platform. In method I, the...
متن کاملInvestigation of Antibacterial and Fouling Resistance of Silver and Multi-Walled Carbon Nanotubes Doped Poly(Vinylidene Fluoride-co-Hexafluoropropylene) Composite Membrane
Composite membranes were successfully prepared using a phase-inversion method. The X-ray powder diffraction (XRD) and energy dispersive X-ray (EDX) profiles has confirmed formation of 4.8 wt % Ag/poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP), 3 wt % Ag-MWCNTs/PVDF-HFP (EDX surface composition of Ag nanoparticles) and 1.5 wt % MWCNTs/PVDF-HFP composite membranes. The MWCNTs crystalli...
متن کاملNovel PVDF-HFP membranes tailored by supercritical drying ..
The work is based on the drying of PVDF-HFP gels with a procedure assisted by supercritical CO2 to obtain nano-sized porous membranes at high quality/low cost ratio. Poly(vinylidene fluoride) (PVDF) as homopolymer or copolymer with hexafluoropropylene (PVDF-HFP) is a very interesting material largely used in catalytic membrane reactors, chemical and biomedical applications and various filtratio...
متن کاملPorous PVDF as effective sonic wave driven nanogenerators.
Piezomaterials are known to display enhanced energy conversion efficiency at nanoscale due to geometrical effect and improved mechanical properties. Although piezoelectric nanowires have been the most widely and dominantly researched structure for this application, there only exist a limited number of piezomaterials that can be easily manufactured into nanowires, thus, developing effective and ...
متن کاملElectrochemical Properties of LLTO/Fluoropolymer-Shell Cellulose-Core Fibrous Membrane for Separator of High Performance Lithium-Ion Battery
A superfine Li0.33La0.557TiO₃ (LLTO, 69.4 nm) was successfully synthesized by a facile solvent-thermal method to enhance the electrochemical properties of the lithium-ion battery separator. Co-axial nanofiber of cellulose and Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) was prepared by a co-axial electrospinning technique, in which the shell material was PVDF-HFP and the core was...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 10 12 شماره
صفحات -
تاریخ انتشار 2018